Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments.

نویسندگان

  • Amy P Wong
  • Raquel Perez-Castillejos
  • J Christopher Love
  • George M Whitesides
چکیده

Accurate modeling of the cellular microenvironment is important for improving studies of cell biology in vitro. Here, we demonstrate a flexible method for creating a cellular microenvironment in vitro that allows (i) controlled spatial distribution (patterning) of multiple types of cells within three-dimensional (3-D) matrices of a biologically derived, thermally curable hydrogel (Matrigel) and (ii) application of gradients of soluble factors, such as cytokines, across the hydrogel. The technique uses laminar flow to divide a microchannel into multiple subchannels separated by microslabs of hydrogel. It does not require the use of UV light or photoinitiators and is compatible with cell culture in the hydrogel. This technique makes it possible to design model systems to study cellular communication mediated by the diffusion of soluble factors within 3-D matrices. Such factors can originate either from secretions of neighboring cells patterned within the microchannel, or from an external source -- e.g., a solution of growth factors injected into a subchannel. This method is particularly useful for studying cells such as those of the immune system, which are often weakly adherent and difficult to position precisely with standard systems for cell culture. We demonstrated this application by co-culturing two types of macrophage-like cells (BAC1.2F5 and LADMAC cell lines) within spatially separated regions of a slab of hydrogel. This pair of cell lines represents a simple model system for intercellular communication: the LADMAC cells produce colony-stimulating factor 1 (CSF-1), which is required by the BAC cells for survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture.

Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprisin...

متن کامل

Assembly of complex cell microenvironments using geometrically docked hydrogel shapes.

Cellular communities in living tissues act in concert to establish intricate microenvironments, with complexity difficult to recapitulate in vitro. We report a method for docking numerous cellularized hydrogel shapes (100-1,000 µm in size) into hydrogel templates to construct 3D cellular microenvironments. Each shape can be uniquely designed to contain customizable concentrations of cells and m...

متن کامل

Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments.

Hydrogel posts in microfluidic devices were investigated as reaction environments for characterizing protein interactions with the goal of mimicking the complexity of a biological environment. The hydrogel environment can be easily tuned to study specific properties of the biological environment. In this study, the hydrogel pore size was tuned to mimic the effect of confinement/crowding on prot...

متن کامل

A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactions.

Viable E. coli cells were entrapped in hydrogel micropatches photopolymerized within microfluidic systems. The microfluidic channels and the micropatches have sizes on the order of 100-500 microm. Small molecules, such as dyes and surfactants, present in the solution surrounding the hydrogel, are able to diffuse into the gel and encounter the cells, but the cells are sufficiently large to be re...

متن کامل

Hydrogel - coated microfluidic channels for cardiomyocyte culture 3

The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2008